CASMaT Villum Center for Advanced Structural and Material Testing

Determination of face/core fracture toughness in aircraft honeycomb sandwich composites using the SCB test method

1st International Symposium on Multi-Scale Experimental Mechanics

 $(EIv'')''=q-\rho A\ddot{v}$

DTU Risø Campus, Roskilde, Denmark, 5th of October 2016

• Francesco Attanasio¹, Christian Berggreen¹

- ¹Lightweight Structures Group, Department of Mechanical Engineering
- Technical University of Denmark, 2800 Kgs Lyngby, Denmark

DTU Mechanical Engineering Department of Mechanical Engineering

Agenda

- Problem statement
- SCB test rig
 - Design
 - Friction reduction
 - Calibration
 - Test setup
- Round Robin
 - Overview
 - Results
- Digital Image Correlation (DIC)
- Conclusions & further developments

Problem statement

• Main objective:

Determination of the fracture toughness in the sandwich composite.

- Design and construct the SCB test rig.
- Execute test and comment the results obtained.

Seven laboratories

Lab #	Laboratory
Lab 1	University of Utah
Lab 2	NIAR
Lab 3	DuPont
Lab 4	NASA
Lab 5	Fraunhofer
Lab 6	Airbus
Lab 7	DTU

• Fifteen specimens

x5: Baseline (no slider, no doubler)x5: Slider (no doubler)x5: Doubler (fixed).

SCB Test rig

SCB Test rig

5 DTU Mechanical Engineering, Technical University of Denmark

SCB Test rig

6 DTU Mechanical Engineering, Technical University of Denmark

SCB Test rig – Friction reduction

x4 (linear) bearings in the sliders. x3 bearings in the hinge.

- Hinge 1.
- Hinge's housings 2.
- Pulling rod hinge link 3.
- 4. Pin
- 5. Pulling rod

7 DTU Mechanical Engineering, Technical University of Denmark

SCB test rig - Calibration

• Objective:

Determine the amount of energy used to move the parts of the rig.

• Method:

To quantify the friction effect over the fracture toughness results, **specifically tuned aluminium** specimens are to be used.

- Experiments: calculate the load-unload cycle energy (hysteresis).
- Beam theory: calculate the strain energy.

Energy loss due to friction = $\frac{Hysteresis area}{Strain energy}$

SCB test rig - Calibration

Alu	minium char	acterization for	calibratio	n specime	ns' des	ign	DED Dep	Mechan artment o	ical Eng of Mecha	ineer nical E	ing ngineerii	ng		
/oung's m	odulus:	Yielding stress (0.2	% offset):	Yielding strain	(0.2% off	set):								
Sp. 1	67.043	153.38	,	0.0042										
Sp. 2	67.564	144.07		0.0041										
Sp. 3	69.066	154.43		0.0042										
Sp. 4	69.111	146.22		0.0041										
Sp. 5	65.522	141.94		0.0042										
Average	67.6612 GPa	148.008 MPa		0.00416 mi	m/mm									
80	Young's M	odulus [Gpa]	180	Yie	lding	stress	[Mpa]		0.0045 —	Yield	ding str	ain [m	m/mm]
70			160			_			0.004 —					_
60			140			_		_	0.0035					
50			120			_			0.003 —					_
40			100						0.0025 —					_
30			80						0.002 —					
20			40						0.0015 -					
10 ——			20						0.0005					
0			C						0 —					
Sp	5.1 Sp.2	Sp. 3 Sp. 4 S	šp. 5	Sp. 1	Sp. 2	Sp. 3	Sp. 4	Sp. 5		Sp. 1	Sp. 2	Sp. 3	Sp. 4	Sp. 5

SCB test rig - Calibration

Calibration specimens sizing:

Calibration load windows:

- Doubler test expected loads \rightarrow 0~300N
- No-doubler test expected loads \rightarrow 0~120N

DTU SCB experiment setup

The test program executes the following steps:

- Start from **0.0 N**
- Move the crosshead (at **5 mm/min** rate) up to the pre-defined **displacement level**.
 - Displ. (1st load-cycle) = 8mm
 - Displ. (2nd load-cycle) = 13mm
 - Displ. (3rd load-cycle) = 20mm
 - Displ. (4th load-cycle) = 27mm
 - Displ. (5th load-cycle) = 36mm
 - Displ. (6th load-cycle) = 44mm
- Hold the position and then go back (at **30 mm/min** rate) to **0.0 N**.
 - Pictures are shot at 6 second intervals.
 - Data (displacement and load) are recorded at a 5Hz rate.

Francesco Attanasio 05/10/2016

Example of pictures shot from the camera during the test:

- Focal length is calibrated to get the sharpest area around the crack;
- Brightness and contrast are to be adjusted during the post processing.

Example of pictures shot from the camera during the test – close up:

Left side's crack length: 60mm

Right side's crack length: 57mm

Round Robin - SCB Test Procedure

• Six load cycles: ~10mm crack growth per cycle, achieved through fixed displacement intervals.

• Data reduction: Area method.

Round Robin – SCB Test Procedure

• Area method

Round Robin – Baseline results (DTU)

Baseline results:

load vs displacement diagrams, superimposed.

- Consistent;
- Curve progresses as expected.

Avg.
$$G_{1c}$$
 (load-cycle 2-6)=1008 J/m²

Round Robin – Baseline results (comparison)

G1c measured - baseline specimens

- Results are consistent (small results difference between laboratories);
- The first load-cycle has to be discarded due to a high scatter of the results.

Round Robin – Slider results (DTU)

19 DTU Mechanical Engineering, Technical University of Denmark

Francesco Attanasio 05/10/2016

Digital Image Correlation

- 3D, non-contact optical technique to measure contour, deformation, vibration and strain on almost any material.
- Uses a high-contrast mono-chromatic dotted pattern painted on the surface of the specimens to detect **strain** and **damages** of the facesheet during the experiments.

DIC output -

Digital Image Correlation

Conclusions

- The **test rig** is a robust and reliable machine to assess the fracture toughness in sandwich-structured composites.
 - Requires low maintenance;
 - is solid and durable;
 - relatively cheap to manufacture.
- The **results** obtained are:
 - consistent within the ten specimens tested thus far in DTU;
 - comparable results obtained from other laboratories.

However, some improvements are to be considered...

Further developments

The further developments suggested address the weak spots of the rig and the test procedure which have been discovered during the tests and are highlighted below:

- Specimens setup: new specimen plate design.
 - Quick specimen setup;
 - environmentally friendly.

Further developments

- Crack monitoring: crack length detection.
 - Avoid reading mistakes;
 - consistent readings.

