CASMaT Villum Center for Advanced Structural and Material Testing

Mixed Mode Fracture Testing of Foam Core Sandwich using the DCB-UBM Test Method

1st International Symposium on Multi-Scale Experimental Mechanics

DTU Risø Campus, Roskilde, Denmark, 5th of October 2016

Vishnu Saseendran¹, Christian Berggreen¹, Leif A. Carlsson²

¹Lightweight Structures Group, Department of Mechanical Engineering Technical University of Denmark, 2800 Kgs Lyngby, Denmark

²Department of Ocean & Mechanical Engineering Florida Atlantic University Boca Raton, Florida 33431, USA

DTU Mechanical Engineering Department of Mechanical Engineering

Contents

- Background and motivation
- Sandwich DCB-UBM specimen
- Mixed-mode screening of H45 sandwich specimens
- Conclusions

Background and Motivation

- Sandwich composites are today used over a broad range of industry applications
- Today structures are increasingly optimized to give minimum weight and max. perf.
- Pushes the utilizations of construction materials closer to their performance limits
- Built-in reserve margins may be significantly reduced
- Reduced allowance to continue performing adequately in the presence of *degradation* and *damage*
- Struc. reliability index vs. life time \rightarrow
- Emphasizes the need for adequate *fracture mechanical tools* for damage assessment
- <u>Key issue</u>: Measurements of fracture properties using fracture mechanics are therefore an increasingly important task
 - Fracture toughness
 - da/dN diagrams
 - Etc.

3 DTU Mechanical Engineering, Technical University of Denmark

Fracture Toughness -Sandwich DCB-UBM specimen

4 DTU Mechanical Engineering, Technical University of Denmark

ISMEM, DTU Risø Campus 05 October 2016

Sandwich Double Cantilever Beam with Uneven Bending Moments (DCB-UBM) specimen

- Pure moments applied at the crack flanks
- No transverse forces
- G-controlled by nature
- Stable crack growth
 - Possible to develop large process zones
- Extended for sandwich testing
- Analytical foundation (Kardomateas et.al, 2013)
 - Kinematic relations for a general asymmetric sandwich with moments
 - Closed form solutions for ERR and mode-mixity

$$G = \frac{1 - v_{f1}^2}{2E_{f1}} \left(\frac{P^{*2}}{h_{f1}} + E_{f1}^2 \frac{M_d^{*2}}{D_d^2} \frac{h_{f1}^3}{12} \right) + \left(\frac{P^{*2}}{(EA)_s^2} H_1 + \frac{P^*M_s^*}{(EA)_s D_s} H_2 + \frac{M_s^{*2}}{D_s^2} H_3 \right)$$

ISMEM, DTU Risø Campus

Sandwich DCB-UBM specimen reinforced with steel doublers

• Avoid excessive rotations with thin sandwich face sheets

6

- Steel reinforcement layers (doublers), but avoid yielding/damage in doublers
- Energy Release Rate (ERR) via J-integral calculation with doubler layers: (Lundsgaard et al, 2007)
- On-going work to derive closed-form expressions for ERR and mode-mixity for a general penta/n layer configuration

$$J = \sum_{p=1}^{10} \frac{E_p M_b^2}{6(A_b D_b - B_b^2)^2} \left[A_b^2 (y_{p-1}^3 - y_p^3) - 3A_b B_b (y_{p-1}^2 - y_p^2) + 3B_b^2 (y_{p-1} - y_p) \right]$$

Sandwich DCB-UBM specimen Novel compact fatigue rated rig

- *Novel* high-fidelity bi-axial servohydraulic operated stand-alone rig
- Fatigue rated
- Capacity up to 565 [Nm]
- Able to apply any moment ratio
- Combined with ARAMIS 12M DIC system for high-resolution specimen monitoring

Sandwich DCB-UBM specimen Novel compact fatigue rated rig

Specifications:

- Low friction roller wagon/rail system
 - Two torsional actuators (700 Nm)
 - Two 10 [L/min] servovalves
 - Two 565 [Nm] torsional load cells
- Bi-axial servo-hydraulic controller (MTS FlexTest SE)
- Conditional control (CASCADE)
 - Rotation controlled tests

Sandwich DCB-UBM specimen New compact fatigue rated rig

• Bi-axial conditional control loop (CASCADE control)

Sandwich DCB-UBM specimen Friction Study

- Friction study performed using a calibraton specimen
- Calibration performed under MR =10, -10, -1 (prominment cases)
- ARAMIS 12M DIC system used for tracking of rotation & to check for yielding in the calibration specimen

Mixed-mode screening of H45 sandwich specimens

• Moment Ratio – sign convention, MR = Md/Ms

Mixed-mode screening of H45 sandwich specimens

Steel reinforcements • Face-sheet thickness $t_f = 5.7 \text{ [mm]}$, core-thickness $t_c = 30$ [mm] Beam lengh, L = 450 [mm] 0 • Sizing of doubler (in LEFM regime) – HS Steel σ_v = 750 [MPa] . 0 . $- J = 1500 [J/m^2]$, $t_{steel} = 6 [mm]$ Specimen clamp grips End inserts Inner Outer border border K dominated zone . Extrapolated values Oscillation $(G, \Psi) - mx = c$ G.Ψ MR =Nodal pairs MX Material 1 (FACE) Х MPC Material 2 (CORE) M Evaluation Numerical Outer M. zone error zone zone MPC L 12 DTU Mechanical Engineering, Technical University of

Mixed-mode screening of H45 sandwich specimens Phase angle vs. moment ratio map - CSDE

 Mode-mixity map made for different core types, H200, H45, Nomex honeycomb

Specimen dimension: (450 mm x 30 mm)

DTU

Mixed-mode screening of H45 sandwich specimens

80 60 40 20 M_d [N.m] 0 -20 H45 40 mm -40 H45 30 mm -60 -80 -100 -2 2 -8 -6 0 6 8 10 -10 -4 4 Rotation [deg] Specimen dimension: (420 mm x 30 mm)

MR	Ψ [deg]
-10	-13.3
-7.5	-11.6
-5.0	-7.9
-2.5	1.98
1.0	-64.1
-1	20.2
1.5	-52.5
2.0	-45.4
5.0	-29.9
7.5	-26.4
10	-24.6

Thickness of core for test = 30 [mm]

DTU

Mixed-mode screening of H45 sandwich specimens Moment and MR vs Rotation

• M_d vs θ_d and MR vs θ_d

Controller compensates for the crack propagation and adjusts substrate arm based on input $\ensuremath{\mathsf{MR}}$

Mixed-mode screening of H45 sandwich specimens ERR vs Rotation

MR = -10, ψ = -13.3, $\Gamma_{J-analyt}$ = 248.2 [J/m²]

Interface crack MR = 7.5, ψ = -26.4°

Conclusions, On-going and Future Work

- A new novel DCB-UBM test rig was presented for measurement of toughness properties for PVC foam cored sandwich specimens
- Comparison of fracture toughness data from literature showed small deviations
- Re-usability of same specimen for various mode-mixities
- **On-going work**: Fracture toughness data reduction based on sudden departure from the G vs Rotation plot (slope > 5%)
- **On-going work**: Derivation of closed-form expressions for a general specimen configuration with doublers
- **On-going work**: Measurement of fracture toughness properties in aircraft honeycomb sandwich specimens (with Airbus)
- Future work: Expansion to fatigue testing!

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGMENT

This work is supported by DCCSM. Support of Villum foundation is greatly appreciated as well as the support of DIAB, Sweden by providing the foam core is greatly acknowledged.

