Approach for investigations of progressive fatigue damage in 3D in fibre composites using X-ray tomography

 $P = \frac{1}{2} \rho A v^3 C_1$

Lars P. Mikkelsen and Kristine M. Jespersen

Composite and Material Mechanics

Department of Wind Energy

Technical University of Denmark

DTU Wind Energy Department of Wind Energy

Fatigue damage evolution in fibre composites for wind turbine blades

- Why is fatigue a problem for wind turbine blades?
	- High number of load cycles throughout lifetime (-10^9)
	- Fatigue is one of the main limiting factors of designing longer blades
- UD NCF glass fibre composite used for wind turbine blades in parts carrying main bending load
- Fatigue in UD NCF composites is a mechanism not well understood

Fatigue damage progression for NCF UD

Fatigue damage hypothesis

Ref: Jens Zangenberg, Povl Brønsted, and John W Gillespie Jr, 2013. *Fatigue damage propagation in unidirectional glass fibre reinforced composites made of a non-crimp fabric*, Journal of composite materials.

Experimental Fatigue Damage Assessment

Idea behind the method

Fatigue damage evolution

Non-crimp uni-directional composites for wind turbine blades

X-ray CT Experiments *Fitting large sample in CT scanner*

- Special sample holder and short mount was made in order to fit the **410mm long** sample in the scanner
- Using this sample holder, it is possible to mount the sample in the same way at every interruption point with only a small

variation.

7

 σ DTU Wind Energy, Technical University of Denmark **50 m1.1** Stress rig for fatigue testing (M12)

Ex-situ X-ray CT results

Segment out the fiber failure

Segment out the fiber failure 45/45 cross-over region Tripple cross-over region (UD contact) (UD contact) Tripple cross-over region 90/45 cross-over region (No UD contact) (UD contact) **Backing bundle** laver Loading streetion UD bundle layer **Backing bundles** Matrix rich regions between UD bundles Matrix rich region between backing bundles **UD bundles Gives good knowledge on the progression mechanism, but can we see all the damage features? Cracks might be closed.**

DTU

Applying tension to the sample during scan *Applying load (outside scanner)*

- Sample loaded in tensile test machine outside scanner and clamp is attached
- The clamp utilizes the curved specimen geometry for load transfer
- Carbon pins are tightened by screw while sample is loaded
- Load on the sample is released and the carbon pins keep the gauge region in tension.
- Using this solution it was possible to keep the sample at 0.17% strain (around 3-4kN) during scanning

Applying tension to the sample during scan *Results, zoom views*

visible when applying tension during scanning. Applying a higher load is likely to have a more pronounced effect

Micro-mechanical modeling (Multiscale)

PhD summerschool and E-learning: CinemaxII

Multi-scale modelling: Understand stiffness drop and cure dependency of fatigue

Conclusions

- Location for fatigue damage was identified near backing bundles and typical at location with intertwining bundles
- Postulated fatigue damage evolution starting as transverse cracking in the backing bundles and subsequently spreading into the load carrying uni-directional fibers
- Fatigue damage evaluation was observed during non-destructive exsitu X-ray CT scans
- Since the damage is observed in 3D, manual quantification is cumbersome and therefore work is ongoing on automatic UD fibre fracture quantification by image analysis.