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Computed Tomography

Is a non-destructive technique in which penetrating-radiation 
measurements of the X-Ray opacity of an object along many X-Ray paths

• to compute a cross-sectional map of the linear attenuation coefficients of 
the object
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Performance factors
Scan quality dependent upon: 

1. how finely the object is sampled

2. how accurately the individual measurements are made, and 

3. how precisely each measurement can be related to an absolute frame of 
reference

*ASTM E 1441-00



• Meso & microstructural visualisation & 
quantification

• Defect analysis

• Through process/time series analysis

• Fabrication

• Performance

• Failure analysis

• Visualisation of mechanisms

• Model initialisation, calibration, validation

• NDE/NDT

• Correlative imaging

• Engineering applications

Why use CT…
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GFRP infiltration



Through-process analysis

• Thorough, time-resolved analysis via various CT & CL tests

Micro-mechanical & macro-mechanical insight

Material

•Unidirectional CFRP
•Thick (150x100x4.5mm)
•Rubber particle toughened
•Non-toughened

Drop Tower Impact & QSI (SRCL)

C-Scan

3D Imaging

• MicroCT
• Synchrotron CT
• Synchrotron computed 
laminography (CL)

Image Analysis

• Qualitative inspection
• Damage and feature segmentation
• Quantify damage 

Compression test

• Conventional testing
• In situ (µCT)
• Bulk FEA simulation

6

CTCL



Undamaged cone
Projected damage area

C-scan

Impact damage mapping

Bull, Sinclair & Spearing, 
Comp, Sci Tech, 2014



Quasi-static indentation (SRCL)
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Scan region

Time-series (~4D CL ex situ scan)
150 x 100 x 4.5 mm panels

7.2 mm

150 mm

100
mm



Quasi-static indentation (SRCL)
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Particle de-bonding events

Scan region 150 mm

100
mm



Toughened interlayer comparison
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Low GIIC laminate
• Delaminations are not 

effectively suppressed
• Poor CAI performance

High GIIC laminate
• delaminations are better 

suppressed
• More matrix cracking 

present
• Good CAI performance

Only the particle type has changed – all other variables consistent

Scan regionTime-series (~4D CL ex situ scan)
150 x 100 x 4.5 mm panels
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After impact Near failure Failed

4.6 mm
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Specimen: Dimensions

Large aspect ratio panels

• Limit magnification

– Sample-source distance

• Artifacts in the reconstructions

– Photon starvation at the 
longest path length
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Region of interest

Limiting geometrical 
magnification

Affecting spatial resolution, i.e. 
how finely the object is sampled

Collision 
risks



Specimen considerations

Specimen size:

• Aspect ratio, size and weight.

– Limitations (physical and resolution)

Composition:

• X-ray transparency/density

– X-ray energy, filters, flux, etc.
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Challenging specimens
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Affects accuracy of each individual measurement

Flat panel 
detector

High energy required to 
penetrate metallic insert

Scatter detected on 
other detector pixels



Multi-material components
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Using the line detector array is time 
consuming
-> do a normal scan and use the line 
detector only at regions of interests

Line  
detector

Higher degree of collimation

CFRP & metallic component



Compensation filters

16

Bowtie filter
Wedge filter

Top-down view Side view

More uniform distribution of 
attenuation coefficients radially

μ-VIS – soil, bowtie filter



Understanding particle-toughened 
interlayers
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• CFRP materials

– Interlayer particle volume fraction = 13% 

– ~5 μm intermediate modulus carbon fibres

– 16 ply uni-directional layup

• Synchrotron Radiation Computed Tomography

– Swiss Light Source, Paul Scherrer Institut

– 0.325 μm voxel resolution
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In situ experiments

Photo: M. Fischer, <http://www.psi.ch/media/research-using-synchrotron-light>



Particle Type – Micro-mechanisms 
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Fibre/interface 

‘peeling’ Fibre-bridging

Particle

de-bonding

Resin 

ligaments

Large ligament with 

particles/resin

Internal particle 

cracking

Particle 

bridging

Crack in fiber bed

Crack in interlayer

Crack initially in interlayer

Base resin, Fibre and Particle Loading consistent



Load Step 1



Load Step 2



• Placement of the sub-volume between load 
steps

– Dependent upon

• Quality of the scans (noise & res.)

• Material micro-structure

• Size of the sub-volume

• Amount of deformation/new 
features

• Calculation of the strains

– Determined by the relative change 
distance between neighbouring sub-
volumes
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Digital Volume Correlation

*G. Borstnar et al., Acta Mat. Vol. 103, 2016 

*B.K. Bay et. al.  Expt. Mech. 39(3) pp. 217-226, 1999.



Tensile opening strains in Mat. A
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Load Step 1

Load Step 2

Micro-mechanical observations of 
Mat. A particles de-bonding at 

average local tensile strains of  > 2%

Observations of internal 
particle fracture occurring at 

strains as low as 0.5%

Poor correlation due 
to new crack surfaces



Tensile opening strains in Mat. A
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Load Step 1

Load Step 2

Compare these curves between 
material systems and FE simulations

Tensile 
opening 

strains/ nodal 
displacement

Position 
along the 
crack tip 

process zone



Crack path modelling
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2D FE micromechanical simulation

Validation

Matrix & 

particle

Fibre 

interface

Particle 

interface

FUTURE – realise this in 3D

How do we get these 

input properties?



In situ rig considerations
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In situ loading rigs
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A.J. Moffat et. al., Scr. Mat., 62(2), pp
97-100, 2010.

Computed Laminography 

Computed Tomography

P. Wright et. al., Compos. Sci. Tech. 
70(10) pp 1444-1452, 2010.



Rig considerations

• X-ray transparency

• Weight restriction

• Beam height restriction

• Rig slenderness – phase (SRCT) or 
magnification (lab)

• Cable drag

• Off-axis weight
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Movement artifact - Carbon fibres 
(~5 μm) appear like triangles

Height restrictionOff-axis weight
correction

Cable drag
(slip rings)

Specimen



In situ testing at synchrotrons
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Computed Tomography

P. Wright et. al., Compos. Sci. Tech. 
70(10) pp1444-1452, 2010.

Damage progression in 
cross-ply CFRP sample

• Transverse ply cracks

Beamlines: ESRF/ID19



In situ testing at synchrotrons
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Computed Tomography

P. Wright et. al., Compos. Sci. Tech. 
70(10) pp1444-1452, 2010.

Damage progression in 
cross-ply CFRP sample

• Transverse ply cracks
• 0° split

Beamlines: ESRF/ID19



In situ testing at synchrotrons
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Computed Tomography

P. Wright et. al., Compos. Sci. Tech. 
70(10) pp1444-1452, 2010.

Damage progression in 
cross-ply CFRP sample

• Transverse ply cracks
• 0° split
• Delamination

Beamlines: ESRF/ID19



Complementary techniques

• Beyond match-stick testing…

• Large scale structural performance related to micro-scale 
mechanisms

• Need to assess ‘fibre breaks’ in non-ideal/real 
microstructures

3275 μm 15 μm 1.4 μmVox. Res.



Hydrostatically loaded composite circumferential structure 
-Specimens extracted at near-failure, informed by Acoustic Emission

-Al-alloy/CFRP 

Sensor locations on the structure
High energy locations

Hybrid Composite Metallic Structure

Up to ~1m

33*A.E. Scott et. al., Compos. Sci. Tech. 90, 2014



Fibre breaks
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Fibre breaks

Void-fibre break mapping
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Future developments/opportunities
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• Fast scanning is a key development relevant for in situ tests

• Limited angle CT and associated iterative reconstruction 
methods for large structures and complex testing rigs

6 minute scan 9 second scan



Laminography: ESRF (ID19)

Courtesy: Lukas Helfen
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CTCL

Micron/sub-micron resolution is possible in larger panels



µ-VIS: Arbitrary X-Ray path methods

• Breaking limitations of size/axisymmetry

O’Brien et al., (2016), iCT

Linear Rotary Raster Swing (1 axis)

Test Phantom



O’Brien et al., (2016), iCT

15 iteration SIRT reconstructions

2 sided raster

2 axis swing

µ-VIS: Arbitrary X-Ray path methods



Challenges

• Industrial applications – large and 
arbitrary shapes

• Automatic segmentation to make 
morphological measurements

• Curating the data – making it available 
and storing it

• Traceability of the measurements – No 
standard for metrology
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In situ
compression rig
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Summary

• Opportunity for understanding material behaviour from 
microns to meters

• Big opportunity to conduct ‘time-consuming’ experiments:

– Wealth of data obtained -> Data Rich Mechanics

– Informed by models, to inform models



Thank you for listening
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Impact acceleration account

μ-VIS X-Ray Imaging Centre
TOMCAT beamline

ID 19 beamline


