CASMaT Villum Center for Advanced Structural and Material Testing

Low temperature testing of debonded PVC foam cored sandwich composites for naval vessels

Arash Farshidi, Marcello Manca and Christian Berggreen

Presenter: Arash Farshidi PhD student

1st International Symposium on Multi-Scale Experimental Mechanics October 5, 2016 – Roskilde, Denmark

DTU Mechanical Engineering Department of Mechanical Engineering

Outline

Background and motivation

□ MMB specimen

□ MMB Formulation

Implementation of tests

G-control test methodology

Experimental Results

Background and motivation

- + superior stiffness/weight ratio
- + Prolonged fatigue life
- + Minimization of maintenance
- + Lack of corrosion
- Experience has shown that a common problem is the existence of debond at the face/core interface of the sandwich
- Debonds can be introduced during the manufacturing processes as a result of poor resin flow or during service due to accidental overloads

Sandwich composites in naval ships

- Naval vessels are expected to operate in a variety of climatic conditions
- Arctic operations are becoming increasingly important for the Navy due to global warming
- It is important to characterize the low temperature fracture of sandwich composites

Danish naval vessel in ice filled waters

MMB Specimen

- Divinycell H100 cross-linked PVC foam
- E-glass/epoxy non-crimp multiaxial (0/45/90/-45) Devold AMT DBLT-850-E10

Mechanical properties of H100 PVC foam core and E-glass sheets.

Properties	value
Foam core: H100 PVC	
Cell size [mm]	0.45
Density [kg/m ³]	100
Compressive modulus [MPa]	135
Shear modulus [MPa]	35
Face sheet: DBLT-850 (0/45/90/-45)	
Young's modulus (E_x) [GPa]	18.6
Poisson's ratio (v_{xy})	0.4
Shear modulus (G_{xy}) [GPa]	6.1

MMB formulation

MMB formulation

- The mode-mixity phase angle has been determined using FEA and the CSDE method [C. Berggreen el al. 2007]
- The reduced mode-mixity formulation has been applied
- The mode-mixity at the crack tip is controled by the lever arm distance, c.

$$C = \left[\frac{c}{L}C_{DCB_upper} + \frac{c-L}{2L}C_{DCB_lower}\right]\left(\frac{c}{L} - \alpha\frac{c+L}{2L}\right) + \left(\frac{c+L}{L}\right)^2 C_{CSB}$$

$$G = \frac{P^2}{2b^2} \left(\frac{c}{L} - \alpha\frac{c+L}{2L}\right)\frac{12}{E_f h_f^3} \left[a^2 + 2a\eta^{\frac{1}{4}} + \eta^{\frac{1}{2}}\right] + \frac{c-L}{2L}\left(\frac{c}{L} - \alpha\frac{c+L}{2L}\right)\left[\frac{1}{h_c G_{xx}} + \frac{a^2}{(D - \frac{B^2}{A})}\right] + \left(\frac{c+L}{L}\right)^2 \left(\frac{a^2}{8}\left[\frac{1}{D_{debonded}} - \frac{1}{D_{int act}}\right]$$

Implementing MMB test inside a climatic chamber

 Quasi-static and fatigue tests were carried out at mode I and mode II dominant at -20° C as well as room temperature, 23° C.

Core density	Face sheet material	Specimen length [mm]	Specimen width [mm]	Face thickness [mm]	Core thickness [mm]	Mode I (Ψ _R =4.4°)	Mode II (Ψ _R =-23.9°)	Low temp.	Room temp.	Fatigue	Static	No. of specimens
H100	E-glass/epoxy	220±1	35±0.5	2	20	Yes	No	Yes	Yes	Yes	Yes	8
H100	E-glass/epoxy	220±1	35±0.5	2	10	No	Yes	Yes	Yes	Yes	Yes	8

G-control test methodology

• The G-control test methodology allows highly controlled cyclic crack growth testing using real-time control of the cyclic energy release rate (ΔG).

G-control test methodology

Conclusion

The preliminary work has shown:

- It seems that the fracture toughness of a typical naval type foam core sandwich composite decreases at low temperatures.
- It seems that the intensity of the degradation depends on the mode-mixity as well.
- It seems that the stiffness properties of the foam core sandwich composite remains same at low temperatures.
- It seems that the crack growth speed increases at low temperatures.
- It seems that the increment of crack growth speed depends on the mode-mixity as well.

ACKNOWLEDGEMENT

Financial support from the US Navy Office of Naval Research (ONR), Grant N00014-14-1-0253, and the interest and encouragement of the Grant Monitor, **Dr. Y.D.S. Rajapakse**, are

gratefully acknowledged.

Thank you for your attention!

[1] A. Quispitupa, C. Berggreen and L. A. Carlsson, "On the analysis of a mixed mode bending sandwich specimen for debond fracture characterization," Engineering Fracture Mechanics, vol. 76, pp. 594-613, 2009

[2] M. Manca, C. Beggreen, L. A. Carlsson and P. Bortolotti, "Fatigue characterization of a face/core interface crack in PVC foam core sandwich composite beams using the G-control method," Sandwich Structure and Materials, DOI: 10.1177/1099636215603049, 2015

[3] M. Manca, C. Berggreen and L. A. Carlsson, "G-control fatigue testing for cyclic crack propagation in composite structures," Engineering Fracture Mechanics, vol. 149, pp. 375-386, 2015