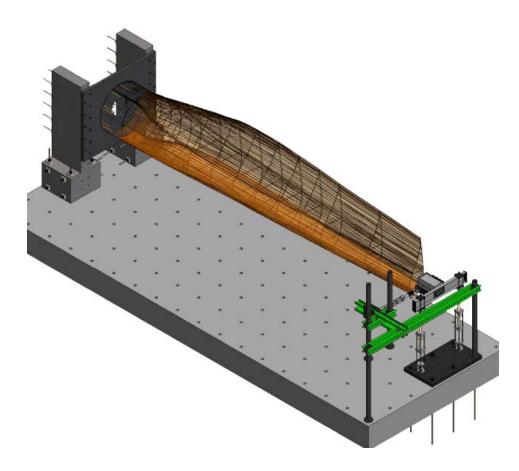

## Sub-structural testing of a wind turbine blade section with localized X-stiffener reinforcements

Maurizio Sala, Research Assistant, DTU Mechanical Engineering

Jacob P. Waldbjørn , Postdoctoral Fellow, DTU Mechanical Engineering




DTU Mechanical Engineering

Department of Mechanical Engineering



# DTU

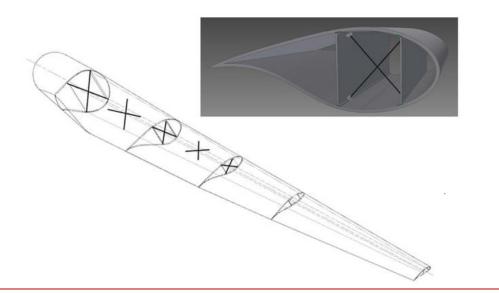
## Sub-structural test of a 15 meters section of a wind turbine blade.

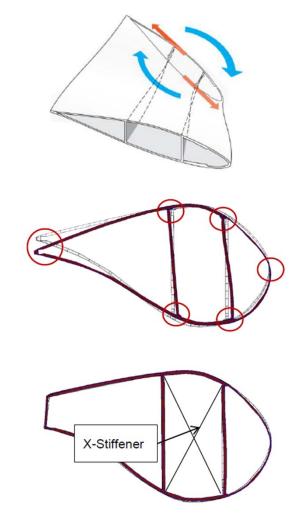






## Sub-structural test of a 15 meters section of a wind turbine blade.



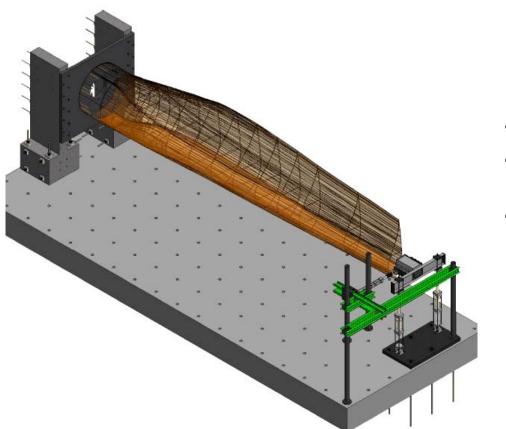






### X-Stiffener retrofit reinforcement

- EUDP LEX Project develop and demonstrate retrofit solutions for mitigating leading edge damages, caused by cross-sectional shear distortion.
- The **X-Stiffener** patented technology prevents the CSSD in cross-section areas by increasing the cross-sectional strength of the blade



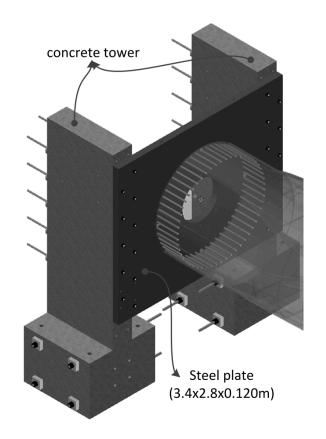



Illustrations from Bladena

# DTU

## The Test Rig developed at DTU Mechanical Engineering

**Overview** 



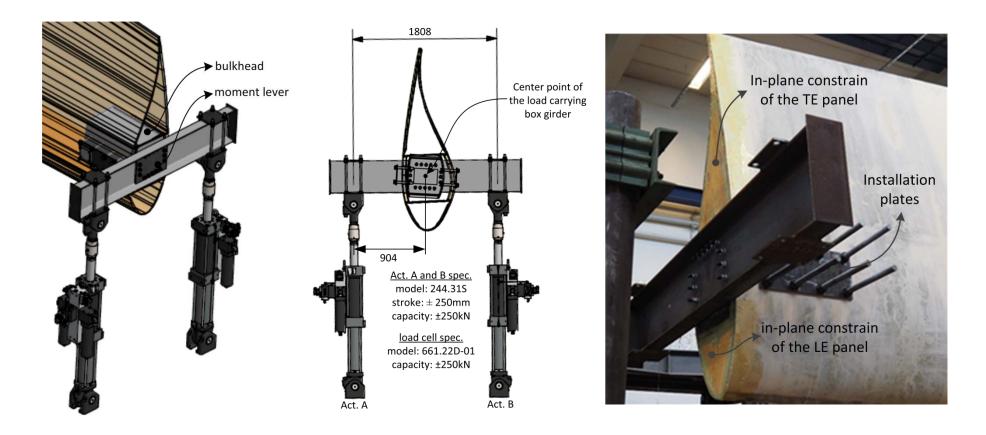

load and deformation capability:

- flapwise: ±50kN and 500mm
- edgewise: ± 100kN and 500mm
- **moment**: ±100kNm and 25 degrees

## The Test Rig developed at DTU Mechanical Engineering

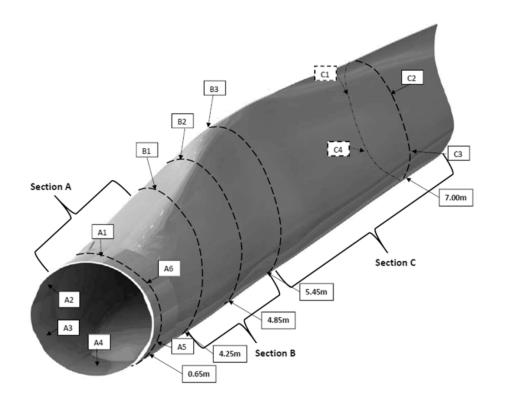
#### **Clamping Support**






DTU

DTU


## The Test Rig developed at DTU Mechanical Engineering

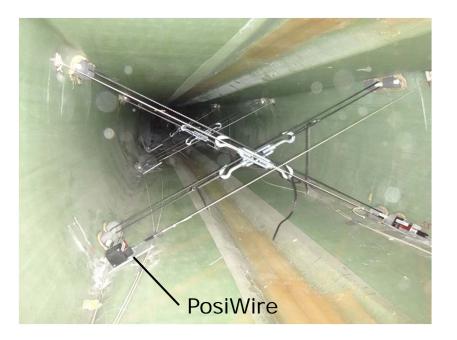
#### Load Train



## The Test Rig developed at DTU Mechanical Engineering

#### Measurement devices




**Strain gauges** at 13 locations Biaxial and rosette strain gauges DTU

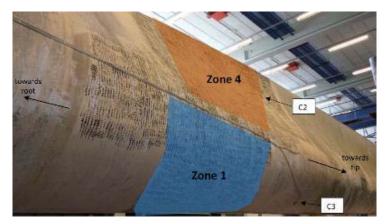


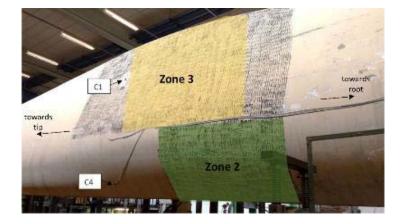


## The Test Rig developed at DTU Mechanical Engineering

**Measurement devices** 




Wire potentiometers at 5 locations, from 5,5 meters to 11,5 meters from the blade root.

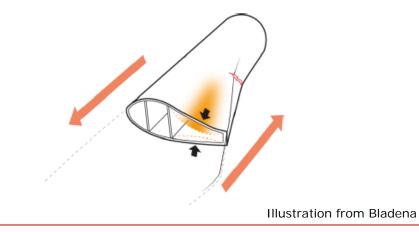

Measuring Cross sectional shear distortion.

Critical value for evaluation of X-Stiffener performances.

## The Test Rig developed at DTU Mechanical Engineering

#### Measurement devices






#### **DIC Measurements** at 4 locations

Large scale system detecting strain and displacement field on the blade surface.

pumping/breathing behavior in the transition zone could be investigated in this configuration

NTII





## The Test Rig developed at DTU Mechanical Engineering

**Control and Data Acquisition** 

The actuators are simultaneously controlled using an MTS FlexTest 100.

Data from PosiWire devices and straing gauges is collected using an MTS FlexDAC 20.



## Static testing for LEX Project

#### Test Plan





#### **1-Actuator configuration**

Combination of Edgewise and Torsion loading

Displacement control until 75kN and back to 0kN

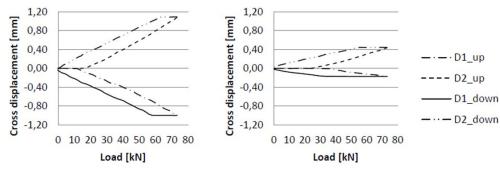

#### 2-Actuators configuration

Pure Torsion loading Maximum moment applied is 90 kNm



### Static testing for LEX Project

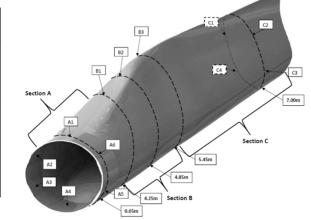
Test Plan




With and Without the X-Stiffener Cross reinforcement



## Static testing for LEX Project

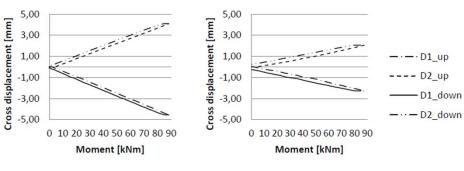

#### **Results for 1-actuator configuration**



Cross-sectional shear displacement at 8,5m from root, without and with the X-Stiffener.



|       |    | Without X-Stiffener | With X-Stiffener | Div. [%] |
|-------|----|---------------------|------------------|----------|
|       |    | [mm]                | [mm]             |          |
| 5.5m  | D1 | 0.790               | 1.145            | -44.88   |
|       | D2 | -0.145              | -0.378           | -159.7   |
| 7.0m  | D1 | -0.002              | 0.382            | -100.5   |
|       | D2 | 0.207               | 0.001            | 99.34    |
| 8.5m  | D1 | -0.994              | -0.172           | 82.70    |
|       | D2 | 1.081               | 0.435            | 59.77    |
| 10.0m | D1 | -2.311              | -0.972           | 57.91    |
|       | D2 | 2.155               | 1.143            | 46.94    |
| 11.5m | D1 | -2.599              | -1.659           | 36.15    |
|       | D2 | 2.705               | 1.699            | 37.18    |




|     | Without X-  | With X-   |       | Without X-   | With X-     |       | Without X-   | With X-     | $\overline{}$ |
|-----|-------------|-----------|-------|--------------|-------------|-------|--------------|-------------|---------------|
|     | Stiffener   | Stiffener |       | Stiffener    | Stiffener   |       | Stiffener    | Stiffener   |               |
| SG  | Strain in O | ) degree  | Dev.  | Strain in 45 | degree [με] | Dev.  | Strain in 90 | degree [με] | Dev.          |
| nr. | [με         | ]         | [%]   |              |             | [%]   |              |             | [%]           |
| [-] |             |           |       |              |             |       |              |             |               |
| 1   | 151.0       | 147.8     | 2.12  | 108.2        | 105.3       | 2.72  | -14.6        | -15.9       | -8.93         |
| 2   | 461.9       | 470.6     | -1.89 | 83.7         | 88.1        | -5.29 | -68.8        | -67.6       | 1.81          |
| 3   | -397.4      | -402.2    | -1.21 | -314.5       | -316.4      | -0.60 | 90.0         | 92.9        | -3.18         |
| 4   | -85.7       | -85.3     | 0.44  | -45.2        | -44.0       | 2.67  | 38.2         | 36.5        | 4.37          |
| 5   | -439.6      | -439.5    | 0.04  | -18.6        | -19.6       | -5.40 | 63.1         | 61.3        | 2.87          |
| 6   | -59.6       | -60.0     | -0.67 | 61.2         | 61.2        | -0.06 | 368.0        | 371.1       | -0.86         |
|     |             | -         |       |              |             |       |              |             |               |



## Static testing for LEX Project

#### **Results for 2-actuators configuration**



Cross-sectional shear displacement at 8,5m from root, without and with the X-Stiffener.

Without X-

Stiffener

12.9

-49.2

47.3

-7.25

-42.7

-11.3

SG

nr.

[-]

1

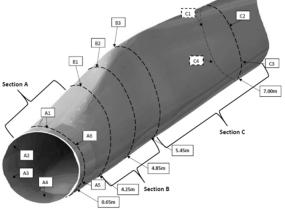
2

3

4

5

6


Strain in 0 degree

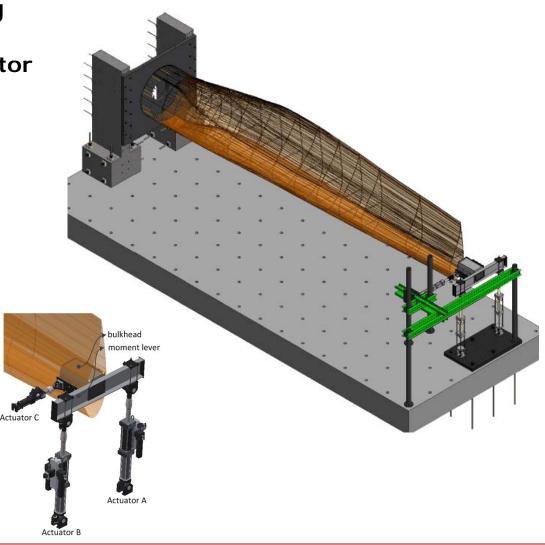
[με]



|       |           | Without X-Stiffener | With X-Stiffener | Div. [%] |
|-------|-----------|---------------------|------------------|----------|
|       |           | [mm]                | [mm]             |          |
| 5.5m  | D1        | -3.028              | -1.398           | 53.83    |
|       | D2        | 2.727               | 1.283            | 52.93    |
| 7.0m  | D1        | -3.947              | -1.925           | 105.0    |
|       | D2        | 3.445               | 1.709            | 50.39    |
| 8.5m  | D1        | -4.516              | -2.282           | 49.48    |
|       | D2        | 4.059               | 2.064            | 49.16    |
| 10.0m | D1 -4.698 |                     | -2.506           | 46.67    |
|       | D2        | 4.404               | 2.327            | 47.16    |
| 11.5m | D1        | -3.995              | -2.458           | 38.48    |
|       | D2        | 4.029               | 2.416            | 40.04    |

| With X-  | - 🔨   | Without X           | - With X- |       | Without X-          | With X-   |       |
|----------|-------|---------------------|-----------|-------|---------------------|-----------|-------|
| Stiffene | r 📃   | Stiffener           | Stiffener |       | Stiffener           | Stiffener |       |
| legree   | Dev.  | Strain in 45 degree |           | Dev.  | Strain in 90 degree |           | Dev.  |
|          | [%]   | [με]                |           | [%]   | [με]                |           | [%]   |
|          |       |                     |           |       |                     |           |       |
| 10.4     | 17.6  | -40.7               | -38.7     | 4.89  | -0.84               | -1.37     | -63.5 |
| -35.5    | 27.9  | -58.4               | -52.9     | 9.37  | 7.04                | 3.15      | 55.2  |
| 36.4     | 23.1  | 57.7                | 55.4      | 3.90  | -14.1               | -7.97     | 43.5  |
| -9.92    | -36.5 | 33.8                | 30.0      | 11.2  | 10.6                | 12.11     | -14.2 |
| -30.5    | 28.6  | 28.8                | 31.2      | -8.52 | 13.9                | 8.24      | 40.8  |
| -6.38    | 43.7  | -24.9               | -28.0     | -12.6 | 34.8                | 23.7      | 31.8  |
|          |       |                     |           |       |                     |           |       |



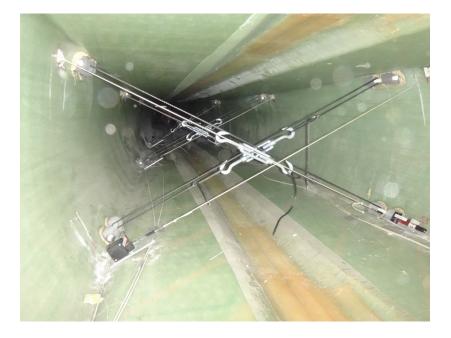



## Future use of the test rig

#### Installation of a third actuator

The third actuator will enable the introduction of **Flapwise** loading to the blade substructure.

3 actuators are controlled simultaneously by the FlexTest 100 controller. Possible combinations of Edgewise, Flapwise and Torsion loading configurations.





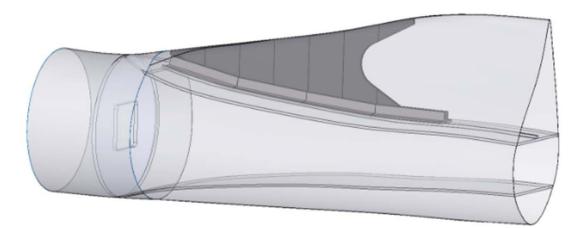

## Future use of the test rig

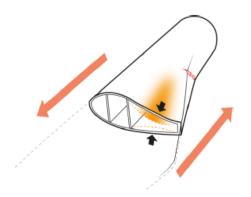
#### Fatigue test of X-Stiffener reinforcement

- Fatigue validation of the test rig
- Evaluation of the performance of the X-Stiffener under cyclic loading conditions
- Fatigue testing using multiple actuators









#### Future use of the test rig

#### **EUDP RATZ Project**

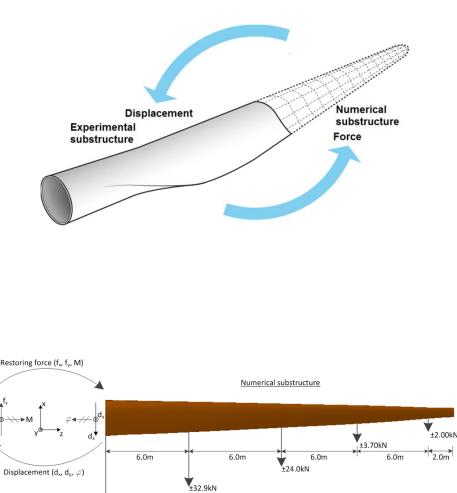
#### Root Area and Transition Zone and Reduction O&M cost of WT blades

The "Floor™" configuration makes it possible to transfer the edgewise loads smoothly to the root section and further into the hub. The Floor™ can be seen as a horizontal shear web and takes shear forces from the trailing edge and transfer them into the hub through the shear web.

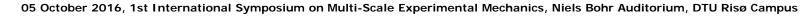




8.0m




05 October 2016, 1st International Symposium on Multi-Scale Experimental Mechanics, Niels Bohr Auditorium, DTU Risø Campus


## Future use of the test rig

### **Hybrid Simulation**

- Numerical substructure is discretized through a commercial FE-software
- A representative load configuration is applied the numerical substructure
- A displacement is fed from the numerical to experimental substructure
- The corresponding reaction force is returned to reveal the response of the experimental substructure
- A coupling is governed through the communication loop which ensures compatibility and equilibrium at the interface



+37 4kN





# THE END

Thank you for attention!