

{2.718281828

Fiber Bragg Grating

A promising technology for wind turbine blade strain detection

Federico Belloni, Development Engineer

 $P = \frac{1}{2} \rho A v^3 C_p$

3

DTU Wind Energy Department of Wind Energy

Outline

- 1. Fiber Bragg Grating working principle.
- 2. FBG installation on a 34m blade quasi-statically tested to failure.
- 3. Findings about FBG measurement data.
- 4. FBG pros and cons.
- 5. Conclusions

FBG working principle


```
\Delta\epsilon[\mu m/\mu] = 1000 \; \Delta\lambda[nm] \; / \; 1.2
```


1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 Wavelength (nm)

Bragg Meter	Wavelength measurement	1 S/s	100 S/s	500 S/s
	Range	100 nm (1500 to 1600 nm)		
	Resolution	1.0 pm	5.0 pm	5.0 pm
	Absolute accuracy	± 2.0 pm	± 10.0 pm	± 10.0 pm
	Sensors per channel	25 (maximum recommended)		
	Optical channels	1,4 or 8		
	Optical detection	Logarithmic Linear (selectable gain steps)		
	Dynamic range	> 50 dB	> 25 dB	> 25 dB

3 DTU Wind Energy, Technical University of Denmark

FBG application on a SSP34m blade

4 DTU Wind Energy, Technical University of Denmark

05/10/2016

FBG applied to full scale blade test

- Full scale blade test up to failure of a SSP 34m blade
- Loading configuration where the blade TE was under compression
- Local buckling along the TE measured by means of the FBGs
- FBG measurements were used to validate a 3D numerical blade model

FBG measurement data analysis

05/10/2016

FBG measurement data analysis

Longitudinal strain along the blade TE in the designated failure area Load 29.67% Transversal strain along the blade TE in the designated failure area Load 29.67%

05/10/2016

FBG measurement data analysis

- Electrical resistance SGs are consistent with FBGs.
- Pearson's correlation shows good correlation between fine and coarse line for increasing load levels.
- 'Noisy' strain data possibly due to local stress concentrations due to voids and micro cracks.

Fiber Bragg Grating

Pros Much cleaner measurement system Simple installation and fiber alignment No electrical problems and less corrosion problems Surface installation or embedded installation Better behaviour under fatigue loading ($\Delta \epsilon = \pm 5000 \ \mu m/m$ guaranteed for 1E+07 cycles)

Cons The $\Delta \epsilon$ is a function of the amount of sensor in a line Lost of data if the sensor goes out of range Mono-directional strain measurement Very small sensor measurement area (0.5x4mm)

Conclusions

- FBG is a very promising technology for wind turbine blade health monitoring and surface or intra-panel (embedded FBG) strain detection.
- FBG strain measurements were validated against electrical resistance SG and good agreement was found.
- A compromise solution between the measurable Δε and the number of sensor in a line has to be designed according to the test goals.
- 'Noise' in strain measurements is very likely related to structural flaws.
- FBGs are expected to have a better behaviour under fatigue loading.
- Kersey AD, "A review of recent developments in fiber optic sensor technology," Optical Fiber Technology, vol. 2, p. 291–317, 1996.
- [2] Hill K, Meltz G, "Fiber Bragg grating technology fundamentals and overview," Journal of Lightwave Technology, vol. 15, p. 1263–1276, 1997.
- [3] Haselbach PH, Eder MA and Belloni F, "A comprehensive investigation of trailing edge damage in a wind turbine rotor blade," Wind Energy, vol. 17, pp. 657-669, 2015.

Thank you

11 DTU Wind Energy, Technical University of Denmark

05/10/2016