

Faculty of Mechanical Science and Engineering, "Friedrich List" Faculty of Transport and Traffic Sciences

Discussions on the influence of residual stresses to the fatigue of layered polymer composites

Institute of Lightweight Engineering and Polymer Technology (ILK)

ISMEM2017 – Lyngby, 9th November 2017

Dr.-Ing. Ilja Koch

Dipl.-Ing. Gordon Just Prof. Dr.-Ing. habil. M. Gude

Mail: ilk@mailbox.tu-dresden.de | Web: tu-dresden.de/mw/ilk | Tel: +49 351 463 37915 | Fax: +49 351 463 38143

Project details

"Evaluation and modelling of the fatigue damage behaviour of polymer composites at reversed cyclic loading"

Objectives

- Analysis of damage behaviour of CFRP under tension and compression on fibre-matrix-, ply- and laminate-level
- Experimental and numerical characterisation of tension-compression asymmetry
- Influence of tension-induced delaminations on compression behaviour
- Mathematical description of the effects of load reversal, block sequence and block length on the damage process
- Extension of existing FEM damage model

Objectives of the presented work

- Understanding crack opening due to residual stresses
 - Controllable model environment (cross ply laminate)
 - Measuring residual stresses from COD
- Measurement of local strain field between adjacent cracks
 - Estimation of crack opening from strain measurements
 - Influence of load reversal on deformation behaviour

Crack opening by tension loads

Partial crack closing by compression loads

Materials

- Fibre: T700SC carbon fibre (6k)
- Resin: Araldite LY556/HY917/DY070
- Lay-up: $[0_2/90_7/0_2]$
- Process: Filament winding + RTM
- Specimen geometry:
 - 190 x 25 x 2 mm (L x W x H)
 - 2 mm aluminium end tabs, extensometer
 - Ply thickness $t_{nom} = 0.181 \text{ mm}$

	Elastic properties				Strength Properties			
	Mean	Std. dev.	Units		Mean	Std. dev.	Units	
E ₁₁	129430	5445	MPa	R _p ⁽⁺⁾	2089	53	MPa	
E ₂₂	8049	437	MPa	R _p ⁽⁻⁾	1032	221	MPa	
E ₃₃	8049	437	MPa	$R_{s}^{(+)}$	36.2	5.3	MPa	
v ₁₂	0.317	0.00763	-	R _s ⁽⁻⁾	164.4	7.9	MPa	
v ₁₃	0.317	0.00763	-	R _{ps}	52.2	5.4	MPa	
v ₂₃	0.41	-	-					
G ₁₂	3916	194.05	MPa					
G ₁₃	3916	194.05	MPa					
G ₂₃	2854	154.96	MPa					

Specimen geometry and anti-buckling device

Residual crack opening

- Two non-interacting cracks after cyclic loading
 - R = -1, $\sigma_o^{lam} = 95$ MPa, n = 5000 cycles
- High resolution microscopic images
 - 500-fold, z-stacking, BW-conversion, 60 80 pixels between crack faces
 - Row wise summation of white pixels, calibration
- Comparison to FE-results for calculating residual stresses

Analysis of local strain field

- 1. Yielding transverse cracks by static tension load
 - Relaxation of strains in 90°-ply
 - Cracks form where strains are recovered
- 2. Cracked specimen loaded in tension and compression
 - $R = \{0; -1; -2.66\}$
 - $-\sigma_o = 95 \text{ MPa}$

Estimations for load reversals

COD under load reversal

Tension-tension ($R = 0, \sigma_o = 95$ MPa)

COD under load reversal

Tension-compression ($R = -1, \sigma_o = 95$ MPa)

COD under load reversal

Tension-compression ($R = -2,66, \sigma_o = 95$ MPa)

- Transverse cracks remain open in case of residual tension stresses
- Layerwise residual stress evaluation possible
- Cracks open under tension and close gradually under compression
 - \rightarrow source for nonlinearities and local change of stress ratio
- Comprehensive fatigue modelling strategies should consider:
 - Residual stress state
 - Physical damage behaviour (cracking, delamination)
 - Damage dependent tension-compression asymmetry

Outlook

- Comprehensive understanding of stress-strain-hysteresis
- Quantification of stress ratio effects and incorporation to existing FE-based damage models