

Structural degradation of a large composite wind turbine blade in a full-scale fatigue test

Xiao Chen xiac@dtu.dk DTU Wind Energy, SAC Section

DTU Wind Energy Department of Wind Energy

Background

Motivations:

- Wind turbine blades sustain a high number of loading cycles up to a magnitude of 1,000 million during their 20-25 years' service lives.
- Substantial studies have been carried out at a coupon level to characterize fatigue degradation of **materials** particularly of UD composites.
- No much experimental study on fatigue degradation of rotor blades at a full-scale structural level.

Problems:

- Do structural properties of rotor blades at a full structural scale degrade in a similar manner to what has been observed in material tests at a coupon level?
- What might be particular concerns one should take into account when predicting fatigue response of rotor blades?

Test setup and measurements

- The blade: 47m, glassfiber/epoxy composites, 2MW, IEC IIA.
- Test standard: IEC 61400-23 (ed. 2014)
- Controlling parameter: -1100 με @22m SS, 2.0 M cycles with 1st mode.

- Strain: ¹/₂ bridge SG along SC with temp. compensation.
- **Bending stiffness (** P/δ_i **):** Disp. @19m, 28m and 39.5m with P @39.5 m.
- Natural frequencies and damping ratios: 2 flap-wise, 2 edge-wise modes and 1 torsional mode.
 - 3 DTU Wind Energy, Technical University of Denmark

Stiffness degradation @ 19m

Stiffness degradation @ 28m

Stiffness degradation @ 39.5m

Highly-strained region

Pressure side

± Fd

Fs

Blade axis

Suction side

Changes of structural dynamics

	Modes of Vibration	Pre-fatigue (0.0 cycle)	Post-fatigue (2.0 m cycles)	Change (%)
Natural frequency (Hz) (5 times average)	1 st flapwise bending	0.663	0.660	-0.45
	1 st edgewise bending	1.227	1.220	-0.57
	2 nd flapwise bending	2.102	2.106	0.19
	2 nd edgewise bending	4.076	4.082	0.15
	1 st torsion	8.781	8.802	0.24
Damping ratio (%) (5 times average)	1 st flapwise bending	0.167	0.204	22.16
	1 st edgewise bending	0.153	0.166	8.50
	2 nd flapwise bending	0.295	0.357	20.90
	2 nd edgewise bending	0.080	0.089	11.25
	1 st torsion	0.084	0.122	45.24

Presumption: Fatigue damages in **biaxial skin laminates** and **core materials** led to the increased **energy dissipation**.

Post-fatigue examination

The whitening of skin laminates

PVC foam cracks

and and another and an and an and an and an and

Transverse cracks in laminate in the root transition region

E.S. C. 18

Preliminary findings

- A full-scale blade shows a *stiffness degradation pattern similar to* composite materials as the flap-wise bending stiffness is controlled by fatigue properties of UD composites.
- The changes of natural frequencies due to fatigue are negligible (<1%). However, *the changes of damping ratios are significant* and they might be *more practical metrics* to indicate the overall fatigue damage.
- Significant increase of the damping ratio in *torsional mode* might be due to fatigue damage in *angle-fiber composites* and *sandwich core materials* used in the blade shells.
- The existence of potentially *critical cracks in local laminates* cannot be reflected by the changes of global structural properties.

Future study of interest

The fact: Rotor blades are *delicate combinations of different materials* primarily *glued and bolted* together to sustain *complex wind loads* for 20 to 25 years.

Materials used in a blade: fibers, resin, sandwich cores, adhesives, metals, etc.

- Fatigue properties of different constituent materials.
- The weakest link due to material, structural and geometric discontinuities.
- Multi-axial stresses under complex load combinations.
- Possibilities of using **different degradation trends** in different materials as **diagnostic information** for SHM.

Thank you. Any questions or comments?

Natural lights illuminate the interior of a large blade which is not painted, allowing a beautiful visualization of discontinuities filled with epoxy resin and adhesive paste.