

8281828

On Fracture Testing of Sandwich Face/Core Interface using the DCB-UBM Methodology in Fatigue

2nd International Symposium on Multiscale Experimental Mechanics: Multiscale Fatigue | DTU, Lyngby

08 – 09 November 2017

VILLUM FONDEN

Vishnu Saseendran and Christian Berggreen

Lightweight Structures Group, Department of Mechanical Engineering Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

DTU Mechanical Engineering Department of Mechanical Engineering

Contents

- Background and motivation
- Sandwich DCB-UBM specimen
 - Intorduction
 - Fatigue test algorithm
 - Pilot fatigue testing
 - Foundation analysis of Moment loaded DCB
 - Comparison w/t FEA
- Conclusions and Future Work

Background and Motivation

- Sandwich composites applications; widely in wind turbine, aerospace and marine industry and growing
- Increasingly optimized structures to yield minimum weight and maximum performance
- Emphasizes the need for adequate *fracture mechanical tools* for damage assessment
 - In particular to assess *debond induced* damages
- Measurements of **fracture properties** are therefore an increasingly important task
 - Fracture toughness
 - da/dN diagrams

Sandwich Double Cantilever Beam with Uneven Bending Moments (DCB-UBM) specimen

- Pure moments applied at the crack flanks
- No transverse forces
- G-controlled by nature no need for crack length measurements
- Stable crack growth
 - Constant mode-mixity enabled by fixing the ratio of moments, $\mathbf{MR} = M_1/M_2$
- Analytical foundation
 - Closed-form solutions for ERR and mode-mixity phase angle

Saseendran, V., Berggreen, C., and Carlsson, L. A., "Fracture Mechanics Analysis of Reinforced DCB Sandwich Debond Specimen Loaded by Moments" *AIAA Journal*, 2017

$$\begin{split} G &= P^2 \bigg(\frac{L_1}{(\bar{E}h)_d^2} + \frac{V_1}{(\bar{E}h)_s^2} + \frac{V_2 \Delta_1^2}{H_s^2} + \frac{V_3 \Delta_1}{(\bar{E}h)_s H_s} \bigg) + M_d^2 \bigg(\frac{L_2}{H_d^2} + \frac{V_2}{H_s^2} \bigg) \\ &+ M_d P \bigg(\frac{2V_2 \Delta_1}{H_s^2} + \frac{L_3}{(\bar{E}h)_d H_d} + \frac{V_3}{(\bar{E}h)_s H_s} \bigg) \end{split}$$

$$\psi = \tan^{-1} \left[\frac{\lambda \sin \omega - \cos(\omega + \gamma)}{\lambda \cos \omega + \sin(\omega + \gamma)} \right]$$
$$\lambda = -\frac{P^*}{M_d^*} \sqrt{\frac{a_1}{a_2}} \qquad \sin \gamma = \frac{-a_3}{2\sqrt{a_1 a_2}}$$

DCB-UBM: Fatigue Testing Algorithm

- Moments applied using independent torsional actuators
- Tests carried out in Rotation control
- Rotation I/p provided to Arm 1
 - Arm 2 follows Arm 1 maintaining constant MR throughout the test
- Two independent channels work in tandem to achieve constant MR.
 - Cascade control
 - Cannot control both arms in moment mode simultaneously.

Output =

 $M_2 - MR.M_1$

Moment 1 (feedback)

Moment 2 (feedback)

DCB-UBM: Fatigue Testing Algorithm

DTU

• The relationship b/w G vs M exploited

$$G = \frac{M_1^2}{2} \frac{dC_1}{dA} + \frac{M_2^2}{2} \frac{dC_2}{dA} + \frac{M_3^2}{2} \frac{dC_3}{dA} = \frac{1}{2b} \left[\frac{M_1^2}{(EI)_1} + \frac{M_2^2}{(EI)_2} + \frac{M_3^2}{(EI)_3} \right]$$

- Critical moment associated with crack initiation identified using a static test (M_{1c})

$$G_{c} = \frac{1}{2b} \left[\frac{M_{1c}^{2}}{(EI)_{1}} + \frac{M_{2c}^{2}}{(EI)_{2}} + \frac{M_{3c}^{2}}{(EI)_{3}} \right]$$

- Now, say for 50% of Gc identify moment corresponding to 70% $(M_{1_{50\%}})$
- Therefore, angle (A_1) which achieves $M_{1_{50\%}}$ for a certain crack length is identified
- Sine curve at 1 Hz executed with continuous crack monitoring!

Mixed-mode screening: Pilot Fatigue Testing

- Pilot testing carried out on round robin specimen
 - Static data already available! $G_{Ic} \sim 1000 J/m^2$
 - HRH-10-3.2-48 (3.2 mm cell size, 48 kg/m³ density) core
 - $-h_f = 0.79 \text{ mm}, h_c = 25.4 \text{ mm}, E_c = 138 \text{ MPa}$
- Angle i/p varied to obtain various ΔG values and crack increment monitored.
 - MR kept constant (hence mode-mixity)
 - Sinusoidal cycle with angle diff. = 2 deg.
 - Reduce inertia effects by minimizing arm rotation
 - Incremental crack positions are pre-marked on the specimen

 $G_{c} = \frac{1}{2b} \left| \frac{M_{1c}^{2}}{(EI)_{1}} + \frac{M_{2c}^{2}}{(EI)_{2}} + \frac{M_{3c}^{2}}{(EI)_{3}} \right|$

Mixed-mode screening: Pilot Fatigue Testing

Interface crack propagation

ΔG (mean) (J/m²)	∆a (mm)
495	10.10
510	12.10
513	15.60
500	10.60

- However, angle not updated when ΔG drops \rightarrow
 - Algorithm can be updated to increase the angle to keep constant ΔG (crude form!)
 - Wagon displacements are minimal at lower rotation (small friction component)
- Program needs to be updated when ∆G drops based on CTOD (*on-going*)
 - Derivation of full kinematic model (on-

going)

DCB-UBM: Moment Loaded SCB

- DCB loaded with Un-even Bending Moments (DCB-UBM) split into two parts:
 - Upper beam (resting on elastic foundation)
 - Lower beam (comprising of core and lower face sheet)
- For analysis the upper beam (face sheet) is considered to be resting on an elastic foundation
 - Winkler foundation model can be utilized
 - The Winkler model is solved by considering a semi-infinite elastic foundation
 - Governing differential equation consisting of two parts: debonded (-a < x < 0) and elastic foundation $(0 < x < \infty)$:

08 November 2017

Moment Loaded SCB: Solution to Winkler mechanical model

• Governing differential equation:

$$EI\frac{d^4w}{dx^4} + kH(x)w = 0 \qquad \qquad H(x) = \begin{cases} 1, x > 0\\ 0, x < 0 \end{cases}$$

• General solution:

$$w(x) = B_1 e^{\lambda x} \cos(\lambda x) + B_2 e^{\lambda x} \sin(\lambda x) + B_3 e^{-\lambda x} \cos(\lambda x) + B_4 e^{-\lambda x} \sin(\lambda x)$$

 For semi-infinite beam, end effects are neglected and exponentially decaying terms are only retained:

$$w(x) = B_3 e^{-\lambda x} \cos(\lambda x) + B_4 e^{-\lambda x} \sin(\lambda x)$$

• Progressive differentiation yields:

$$\theta(x) = \frac{dw(x)}{dx} = -B_3\lambda f_3(\lambda x) + B_4\lambda f_4(\lambda x)$$

$$M(x) = -EI\frac{dw^2(x)}{dx^2} = -\frac{B_3k}{2\lambda^2}f_2(\lambda x) + \frac{B_4k}{2\lambda^2}f_1(\lambda x)$$

$$V(x) = \frac{dM(x)}{dx} = -\frac{B_3k}{2\lambda}f_4(\lambda x) + \frac{B_4k}{2\lambda}f_3(\lambda x)$$

• Solve for B_3 and B_4 by BCs: V = 0 and $M = M_0$ at x = 0.

$$f_1(\lambda \mathbf{x}) = e^{-\lambda \mathbf{x}} \cos(\lambda \mathbf{x})$$
$$f_2(\lambda \mathbf{x}) = e^{-\lambda \mathbf{x}} \sin(\lambda \mathbf{x})$$
$$f_3(\lambda \mathbf{x}) = e^{-\lambda \mathbf{x}} \left(\cos(\lambda \mathbf{x}) + \sin(\lambda \mathbf{x})\right)$$
$$f_4(\lambda \mathbf{x}) = e^{-\lambda \mathbf{x}} \left(\cos(\lambda \mathbf{x}) - \sin(\lambda \mathbf{x})\right)$$

Moment Loaded SCB: Solution to Winkler mechanical model

• Solving for constants B_3 and B_4 yields deflection, rotation, moment and shear in the foundation part:

$$\mathbf{w}(x) = \frac{M_o 2\lambda^2}{k} \left(f_1(\lambda \mathbf{x}) - f_2(\lambda \mathbf{x}) \right) \qquad (0 \le x \le \infty)$$

$$\theta(x) = \frac{dw(x)}{dx} = -\frac{M_o 2\lambda^3}{k} \left(f_3(\lambda x) - f_4(\lambda x) \right)$$

$$M(x) = EI \frac{dw^2(x)}{dx^2} = -M_o \left(f_2(\lambda x) - f_1(\lambda x) \right)$$
$$V(x) = EI \frac{dw^3(x)}{dx^3} = -M_o \lambda \left(f_4(\lambda x) + f_3(\lambda x) \right)$$

• Deflection for the debonded part obtained by solving homogenous equation:

$$EI\frac{d^4w}{dx^4} = 0$$

• General solution is of the form: $w(x) = C_1 \frac{x^3}{6} + C_2 \frac{x^2}{2} + C_3 x + C_4$

• Constants C_1 and C_2 can be obtained from BCs: V(x=0) = 0 and $M(x = 0) = M_o$

$$f_1(\lambda \mathbf{x}) = e^{-\lambda x} \cos(\lambda \mathbf{x})$$

$$f_2(\lambda \mathbf{x}) = e^{-\lambda x} \sin(\lambda \mathbf{x})$$

$$f_3(\lambda \mathbf{x}) = e^{-\lambda x} \left(\cos(\lambda \mathbf{x}) + \sin(\lambda \mathbf{x})\right)$$

$$f_4(\lambda \mathbf{x}) = e^{-\lambda x} \left(\cos(\lambda \mathbf{x}) - \sin(\lambda \mathbf{x})\right)$$

Moment Loaded SCB: Solution to Winkler mechanical model

• Solving for constants C₁ and C₂ in:

$$w(x) = C_1 \frac{x^3}{6} + C_2 \frac{x^2}{2} + C_3 x + C_4$$

- Must also ensure continuity with the foundation part, thus:
 - Deflection and the progressive derivatives must be continuous in the two intervals (-a, 0) and (0, ∞).

$$\mathbf{w}(x) = M_o \left[\frac{x^2}{2EI} - \frac{4\lambda^3 x}{k} + \frac{2\lambda^2}{k} \right] \qquad -a \le x \le 0$$

• The total deflection of a moment loaded SCB specimen is:

$$w(x) = M_o \begin{cases} \frac{x^2}{2EI} - \frac{4\lambda^3 x}{k} + \frac{2\lambda^2}{k} & (-a \le x \le 0) \\ \frac{2\lambda^2}{k} [f_1(\lambda x) - f_2(\lambda x)] & (0 \le x \le \infty) \end{cases}$$

Deflection and rotation of beam with a built-in end at x = 0, can be recovered from $k \rightarrow \infty$

$$w(-a) = M_0 a^2 / 2EI$$
$$\theta(-a) = -M_0 / 2EI$$

Moment Loaded SCB: Compliance and Energy-release rate

• Compliance defined as rotation/moment:

$$C = \frac{|\theta(-a)|}{M_0}$$

• Rotation can be obtained from the deflection solved for Winkler model:

$$\theta(x) = \frac{dw}{dx} = M_o \begin{cases} \frac{x}{EI} - \frac{4\lambda^3}{k} & (-a \le x \le 0) \\ \frac{2\lambda^2}{k} \left[-f_3(\lambda x) - f_4(\lambda x) \right] & (0 \le x \le \infty) \end{cases}$$

- Hence at x = -a, the compliance is:
- Energy-release rate expressed as: $G = \frac{M^2}{2b} \frac{dC}{da} \longrightarrow G = \frac{M_o^2}{2bEI}$

 $C = \frac{a}{FI} + \frac{4\lambda^3}{\nu}$

z, w(x)

 M_0

Moment Loaded SCB: FE Analysis

- FE Analysis (2D) carried out with a Al/H100 sandwich specimen; $h_f = 6.35 \text{ mm}$, $h_c = 25.4 \text{ mm}$), $M_o = 1 \text{ N mm/mm}$, final crack length = 50.8 mm (2 inch)
- Displacement and rotation obtained using algebraic expression obtained earlier at x = -a:

- Both displacement and rotation increase w/t increasing crack lengths
- The foundation modulus expression proposed gives good agreement with FE results!

$$k = \frac{E_c b}{h_c / 4}$$

Moment Loaded SCB: FE Analysis

- Energy-release rate expressed as: $G = \frac{M_o^2}{2bEI}$
- Independent of :
 - Crack length, a
 - Elastic foundation modulus, k
- *G* determined from FEA unaffected by crack length

- G normalized with $E_f h_f^3$

• A difference in 3% is observed b/w FEA and analytical expression for all range of crack lengths

Conclusions and Future Work

- Pilot fatigue testing performed
 - Algorithm implemented using angle control
 - Way forward: maintain constant ΔG by updating angle or control using CTOD
- Winkler foundation model applied to a moment loaded SCB specimen was solved and compared with FEA
 - Current analysis is an initial step toward solving DCB-UBM
 - Analytical expressions compare fairly well with FE results

Future Work

- Derivation of DCB-UBM kinematics solving for the lower beam (on-going)
- Extension into fatigue, using kinematics to control on end openings (on-going)
- Fracture characterization at high/low temperatures (design of climatic chamber on-going)

THANK YOU FOR YOUR ATTENTION!

ACKNOWLEDGMENT

This work is supported by DCCSM. Support of VILLUM Ffoundation is also greatly acknowledged.

REFERENCES

[1] Sørensen, B. F., Jørgensen, K., Jacobsen, T. K., & Østergaard, R. C. (2006). *DCB-specimen loaded with uneven bending moments*. International Journal of Fracture, 141(1-2), 163-176.

[2] Lundsgaard-Larsen, C., Sørensen, B. F., Berggreen, C., & Østergaard, R. C. (2008). *A modified DCB sandwich specimen for measuring mixed-mode cohesive laws*. Engineering Fracture Mechanics, 75(8), 2514-2530.

[3] Berggreen, C., Simonsen, B. C and Borum, K. K. *Experimental and numerical study of interface crack propagation in foam-cored sandwich beams.* Journal of composite materials 41, no. 4 (2007): 493-520.

[4] Kardomateas, G. A., Berggreen, C., and Carlsson, L. A., *Energy-release rate and mode mixity of face/core debonds in sandwich beams.* AIAA journal 51.4 (2013): 885-892.

[5] Saseendran, V., Berggreen, C., and Carlsson, L. A., *Fracture Mechanics Analysis of Reinforced DCB Sandwich Debond Specimen Loaded by Moments.* AIAA journal DOI: 10.2514/1.J056039.

Appendix

18 DTU Mechanical Engineering, Technical University of Denmark

Sandwich DCB-UBM specimen reinforced with steel doublers

- Avoid yielding in reinforcements and excessive rotations
- Possible to account for thin face sheets
- Energy Release Rate (ERR) via J-integral calculation: (Lundsgaard et al, 2007)

$$J = \sum_{p=1}^{10} \frac{E_p M_b^2}{6(A_b D_b - B_b^2)^2} \left[A_b^2 (y_{p-1}^3 - y_p^3) - 3A_b B_b (y_{p-1}^2 - y_p^2) + 3B_b^2 (y_{p-1} - y_p) \right]$$

19 JU mechanical Engineering, Lechnical University of Denmark

Sandwich DCB-UBM specimen Novel compact fatigue rated rig

Specifications:

- Low friction roller wagon/rail system
 - Two torsional actuators (700 Nm)
 - Two 10 [L/min] servo-valves
 - Two 565 [Nm] torsional load cells
- Bi-axial servo-hydraulic controller (MTS FlexTest 40)^{Angular}_{displacement} transducer
- Conditional control (CASCADE)
 - Rotation controlled tests

