

Development of a Mode I/II/III test fixture for sandwich face/core fracture characterization

2nd International Symposium on Multi-Scale Experimental Mechanics DTU Lyngby Campus, Denmark, 8th of November 2017

Pietro Sabbadin¹, Christian Berggreen¹, Brian Nyvang Legarth²

¹Lightweight Structures Group, Department of Mechanical Engineering Technical University of Denmark, 2800 Kgs Lyngby, Denmark ²Associate Professor, Department of Mechanical Engineering Technical University of Denmark, 2800 Kgs Lyngby, Denmark

$(EIv'')''=q-\rho A\ddot{v}$

DTU Mechanical Engineering

Department of Mechanical Engineering

Contents

- Background and motivation
- Test rig Design methodology
- Test rig presentation
- Numerical model and materials
- Numerical analysis and results
- Conclusions

Background and motivation

- Sandwich composites are used over a large range of engineering applications;
- Superior stiffness/weight and strength/weight ratios;
- Structure optimization brought to reach their performance limit

Structural reliability reserve margins are reduced

Damage assessment is essential to judge the reliability index of a structure

Need of proper *fracture mechanical tools for* damage assessment

Measurement of interface fracture properties under the most general load set (mode I-II-III are present at the crack tip) is an increasingly important task

Problem Statement and Design Methodology

Main objective:

Measure the delamination (composite laminate) or the interface fracture toughness (sandwich composite), for fixed mode-mixity ratios between mode I, II and III.

- Design and construction of the new test rig;
- FE analysis to design properly the specimens.

Test rig presentation

- The test rig will be implemented in a MTS 858 Axial-Torsional test machine;
- An additional external actuator introduces P_{III} along the zdirection;
- Mode I load (P_{T}) is applied onto the specimen by the MTS hydraulic actuator through the upper clevis;
- Mode II load (P_{II}) is transferred to the specimen by the lever arm action;
- Mode III load is applied by an additional actuator that is pushing on the lower clevis along the z-direction.

Test rig presentation

Numerical Model and materials simulated

Laminate	Elastic Moduli [GPa]						Poisson´s ratios		
	E ₁₁	E ₂₂	E ₃₃	G ₁₂	G ₁₃	G ₂₃	V ₁₂	V ₁₃	V ₂₃
Unidirectional GFRP	48.00	8.00	8.00	4.00	4.00	3.00	0.285	0.285	0.333
Unidirectional CFRP	150.00	10.00	10.00	5.36	5.36	3.75	0.330	0.330	0.333

7 **DTU Mechanical Engineering, Technical University of Denmark**

ISMEM, DTU Lyngby Campus 08 November 2017

Numerical Model and materials simulated

- The strain energy release rate (SERR) components were extracted along the crack front using the nodes relative displacements computed behind the crack front;
- The Crack Surface Displacement Extrapolation (CSDE, Berggreen 2004) method was applied in order to extrapolate the SERR components along the crack front.

Mode III analysis

 The presence of the longitudinal cuts is fundamental in order to achieve a **pure mode III state** also at the crack front free edges;

 In this way, it is possible to obtain an homogeneous distribution of G_{III} along the crack front when only P_{III} is applied.

1,01 1,00 0,99

0,98 0,97 0,96 0,96 0,96 0,990 0,995

0,995

0.930 0:985

0,975

0,970

0,965

9,960

 $(G_{\rm III}/G_{\rm LOCAL})_{\rm AVG}$

 $(G_{III}/G_{LOCAL})_{\rm AVG}$

8;980 20,00

30,00

40,00

50,00

Mode III analysis

- The geometric parameters W ٠ and I do not influence significantly the average value of G_{III} along the crack front;
- It is recommended to choose ٠ the crack length a between 29 mm and 31 mm in order to maintain the average value of G_{III} as high as possible along the crack front.

10

663001/160,00

₩-[30mm

L = 220 mm

UD CFRP

100,00 110,00

 $\beta = 1/16$ L=220 mm

a=31.5 mm

UD CFRP

90,00

80,00

Mode I-II analysis

- It is possible to transfer different P_I/P_{II} load ratios onto the specimen changing the distance c;
- Different P_I/P_{II} load ratios induce different modemixity (between mode I and II) values at the crack tip;

c [mm]	Ψ [DEG]			
0	2.6			
75	40.1			

Unidirectional CFRP

Conclusions

In this preliminary work:

- A 3D FE model was built in order to understand which geometrical parameters, load and boundary condition sets can provide a pure mode III SERR distribution along the crack front for two kind of laminates;
- The achievable mode-mixity range (for mode I and II) was explored for different values of lever arm length c;
- A preliminary design of the new test rig was carried out. It will be implemented in a MTS 858 Axial-Torque test machine.

Future work:

- Additional numerical analyses on sandwich composites regarding the SERR distribution along the crack front;
- Test rig construction and preliminary experimental tests.

Acknowledgement

Financial support from the US Navy Office of Naval Research (ONR), Grant N00014-16-1-2977, and the interest of the Grant Monitor, **Dr. Y.D.S. Rajapakse**, are gratefully acknowledged.

Thanks for your attention